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1. Phys.: Condens. Matter 5 (1993) 6563-6574. printed in the UK 

The roughness-induced classical size effect in thin films 

R Lenk and A Knabchen 
University of Technology Chemnitl-Zwickau, InstiNte for Theoretical Physics, PO Box 964, 
D-09W9 Chemnitz, Federal Republic of Germany 

Received 18 May 1993 

Abstract. We consider the eleckonic transport process in thin films with rough surfaces. The 
approach employed is based on classical concepts and avoids some special assumptions used in 
earlier papers. Roughness is described in tenns of scatterers lhal are distributed randomly on the 
surfaces. Their differential scanering cross section yields a generally angle-dependent specularity 
parameter. A new form of this angle dependence is proposed We show h t  the homogeneity of 
the lateral canier distribution. as postulated by Fuchs in his well known paper published in 1938, 
is associaled with the time-reversal symmetry of the microscopic scanering cmss section. The 
divergence of the classical surface-dominated conductivity. i.e. for vanishing bulk scanering, is 
enhanced for angle-dependent specularity paramelem in comparison with the constant parameter 
introduced by Fuchs. We furlher show how to make contact between classical formulations and 
quantum-mecharid approaches leading 10 a stronger dependence of the conductivity on the 
film thickness. Our results are compared with existing classical sile-effect theories. 

1. Introduction 

The electrical resistivity of metallic films is determined by the simultaneous occurence of 
surface scattering and scattering within the film. The latter effect gives rise to a finite mean 
free path (MW) 1 in the extended bulk. The surface contribution to the resistivity is attributed 
to surface roughness, strictly speaking, it is due to the deviations from a perfectly plane 
surface. This extra resistance gains importance as the thickness of the film d approaches 
the MFP, i.e., in the classical size effect regime. Theoretically, the influence of the surface 
on the DC conductivity in this case was first studied comprehensively by Fuchs in 1938 {I]. 
His calculations are based on the Boltzmann equation where the surface is incorporated via 
boundary conditions on the velocity distribution function. In particular, a single parameter p 
defines the fraction of conduction electrons reflected specularly at the surface, the remaindex 
being scattered diffusely. This phenomenological description contains no direct information 
about the microscopic scattering mechanism itself. Nevertheless, Fuchs's theory is widely 
applied to analyse. experimental data. 

In the last decades, Fuchs's formulation has been subject to a number of modifications 
(see, for reviews, [2]-[41). All these considerations have retained a substantial feature of 
the original model, namely, an additional surface scattering is superimposed on the bulk 
relaxation mechanism. More recently, some authors have proposed quantum mechanical 
approaches leading to a very pronounced dependence of the conductivity on the thickness. 
In the almost-classical case when a large number of lateral subbands are occupied, one finds 
for the surface-dominated conductivity us 5 d2 [5-8]$, in good agreement with experimental 

t We note that such a quadratic law for thin films was also found by Jaggi 191, employing. however, a distinct 
approach. 
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data for a certain thickness region. Beyond former theories we demonstrate below how to 
make contact between the results of a purely classical framework and this relation. 

It seems to be rather surprising that a classical model starting with a detailed 
consideration of scattering processes at the surface has not yet been investigated. It is 
the aim of the present work to do this and thus to bridge, in the noted sense, the gap to 
quantum-mechanical results. We remark that a classical approach offers the opportunity 
to go beyond the perturbational treatment applied in all quantum-mechanical papers. The 
validity of these theories is limited (in a strict sense) to nearly specular reflecting surfaces. 

In our model, the roughness is represented by scatterers that are disnibuted randomly 
over the surface. Each of them scatters particles with a differential scattering cross-section 
S. As a microscopic quantity this scattering cross section fulfils time-reversal symmetry, 
S(v’, v )  = S(v, v’), where v and v’ refer to the velocity of an incident or emerging 
particle, respectively. It is this symmetry which guarantees homogeneity of the lateral 
carrier distribution in agreement with the classical limit of the local density of states. This 
property of a physically sensible solution would be violated for an asymmetric microscopic 
scattering law. The lateral homogeneity mentioned has been only postulated by Fuchs. Our 
present investigation shows, however, that this assumption conflicts with the common model 
of an angle-independent specularity parameter. 

The normalization of the specular component is determined by the requirement of current 
balance, of course. As a result, our specular contribution, p(v), exhibits in general an 
angular dependence and obeys the physically appealing condition p(v) + 1 for grazing 
incidence. 

We mention that, apart from the symmetry as pointed out above, S(v‘, v) is in principle 
allowed to be an arbitrary angular function. This angular dependence is less important 
when the MFP is small compared to the thickness. Otherwise, the free propagation is 
scarcely restricted by internal scattering but mostly terminated by diffuse surface scattering. 
It is well known that the corresponding surface-dominated conductivity tends to infinity 
for increasing MFP. This singularity results from carriers travelling nearly parallel to the 
surface. Consequently, their contribution is given by the surface properties for grazing 
incidence. In particular, a constant specularity parameter as introduced by Fuchs yields 
a weak logarithmic divergence. We will show that a physically sensible angledependent 
scattering law does not remove this singularity but makes it even more pronounced. 

We derive our formulae in the diffusion picture, i.e., a stationary current is related to 
a given carrier density gradient. This choice is only a formal matter because it is well 
known how to progress via the Einstein equivalence between a driving force and a negative 
gradient of the chemical potential from diffusivity to conductivity. Some remarks on the 
transcription to the familiar force case are given in the appendix. 

The outline of the paper is as follows. In section 2 we compile some equations associated 
with the classical distribution function employed and derive the total transition probability 
from the scattering cross section, S. Additionally, we discuss some realizations of S. 
Afterwards we calculate the diffusion constant in the case when only surface scattering 
occurs (section 3). In section 4 the simultaneous cccurence of both surface and bulk 
scatterers will be considered. As expected, we rederive and confirm Fuchs’s result with an 
angle-dependent specularity parameter. Section 5 is used for discussions of the different 
solutions and limiting cases. A summary is given in section 6. 

R Lenk and A Knahchen 

2. Transition probability associated with surface roughness 

Let e(?-, v) denote the density distribution of Caniers with velocity v at point T and at a 
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fixed energy E = $mu2 which implies U = constant. The total carrier density is then given 
by 

e ( T )  = \ dQ e(r. v) (1) 

where the integration runs over all directions of a. The current density can be written as 

Finally, we introduce the surface scattering relation 

U') = dQ fdv', v)e(r., v )  (3) J 
i.e., particles leaving the surface from a point rg with velocity a' are related to those arriving 
with velocity v via a transition probability per unit solid angle, f+(a'. U). Unlike the 
expressions defined above, the integral runs in equation (3) over the half sphere appropriate 
for the upper or lower surface. Generally, the surfaces may differ structurally corresponding 
to the experimental situation where the film is commonly deposited on a glass substrate in 
vacuum. This fact is expressed in terms of the two quantities f+ and f-, the transition 
probabilities at the upper ( z  = d) or lower (L = 0)  surface, respectively. For the sake of 
brevity. however, these indices are often omitted in the following. 

Figure 1. This picture shows the cnmdinates employed. 
The film is bounded by the planes z = 0 and z = d.  The 
longitudinal position is determined by rl, = ( x , y ) .  The 
canier's velocity is ohten expressed in terms of spherical 
angles (8.qP). Far clarity. the azimuthal angle. v. is not 
shown. The angle of the velocity with the surface normal. 
8. varies from 0 to r. The horizontal distance between 
surface points where a particle emerges or arrives is denoted 
by A W ) .  

U' 

..?;II 
7' :=o 

Now we ask for the transition probability characterizing a statistically rough surface. 
The roughness is modelled by the presence of surface scatterers, assumed to be distributed 
homogeneously and uncorrelated. This implies that the intensities emerging from different 
scatterers simply add: interference effects can be neglected. The scattered current density 
emerging from a single scatterer is given by (see figure I )  

j d r .  v') = Rv'. z ~ [ r  - TJ(T - rS)*] ji,,(r8, a) (4) 

where j i n  refers to particles incident with velocity v and S is the differential scattering 
cross section. To find the total scattered current density per unit solid angle dQ', expression 
(4) has to be multiplied by the mean number of scatterers belonging to the surface region 
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concerned, N$(T -T$  dQ’/l cos0‘1, where N, is their mean areal density. We are thus led 
to 

R Lenk and A Knabchen 

(I/jin)dj~’(w’)/dS‘ = N,S(w‘, w)l cosO’1 

which is simply the transition probability associated with surface scatterers only. Taking into 
account the fact that incoming carriers can be also reflected specularly, the total transition 
probability has the form 

where the first term includes the specular reflection of a carrier from w = (uz. uy ,  U,) to 
w* = (ux ,  uy ,  -uz) and the 6 function is normalized as jdS2 &@‘ - P )  = 1. The factor p ,  
in view of Fuchs’s paper [l], will be denoted as the specularity parameter. This parameter 
can vary from zero (for completely diffuse scattering) to unity (for completely specular 
reflection). Its normalization is determined by the requirement of current balance. This is 
related to the normal component of the current only and yields immediately (equations (2) 
and (3)) the relation 

where we have introduced = I cos81. Applying this formula to (6) one obtains 

p(w) = 1 - 

for the generally angle-dependent specular parameter. 
Provided that the transition probability is normalized according to (7). we can derive 

This additional relation rests on the time-reversal symmetry fulfilled by the scattering cross 
section S. It will be used below to prove the homogeneity of the lateral carrier density 
distribution. 

Equations (7) and (9) have already k e n  given by Moliner and Simons [lo, 111 in a 
fomewhat different context, and applied by Greme and O’Donnell [12,13] to consider 
Fuchs’s theory with an angle-dependent specularity parameter. The complicated results 
obtained by these authors have, however, attracted little attention. 

In view of its influence on the resulting diffusivity, and for its own interest, the 
angular dependence of the scattering cross section S should be taken seriously. To specify 
this dependence we assume that S is merely a function of the angles 6, 6“ between w, 
w’ and the normal direction of the surface, i.e., the angle of incidence or reflection, 
respectively. Taking into account the symmehy condition, S can now be rewritten as 
S = F(cosB’, cos@ = F(cosO,cos€”). As the simplest case, we may further assume that 
F factorizes, cf. below. Additionally, we will consider only the simplest realizations of 
F ,  or, in more mathematical terms, refer to a power-series expansion in the variable cos@. 
Obviously, a constant term is not possible. In order to compensate the denominator in 
equation (8). S has to include at least a linear term, Le., S = SocosO‘cos~. S. = constant. 
This ansa12 is not too artificial because already the effectiveness of classical surface 
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scattering is weighted by a cosine (Lambert's law). Consequently, that scattering law could 
be considered as its symmetrized representation. It yields for the specularity parameter 
(equation (8)) p(v) = 1 - zN&. This is the only non-trivial case leading to an angle- 
independent parameter p .  

Nevertheless. this scattering law is not compatible with quantum mechanics where the 
simplest case is a C O S ~ ' C O S ~  behaviour of the scattering amplitude. It can be shown 
to be correct for a single scatterer whose size (diameter) is small compared with the 
wavelength [14]. For the scattered current, as a bilinear function of the scattering amplitude, 
we are thus led to 

S = So cos' O'cOsz 0 s, =constant. (10) 

We argue, guided by the arguments given above, that this representation is the simplest 
function that obeys all physical requirements. Equation (10) will therefore be favoured in 
the following. Furthermore we mention that this scattering law of a single surface scatterer 
was employed in [SI to confirm the result of Fishman and Calecki [7] on the quantum size 
effect in thin films that includes a behaviour of the conductivity as d6. 

Substituting equation (10) into (8) one obtains 

p(v) = 1 - fnNSS.Icos0l = p(<). (11) 

In view of the derivation, the condition 0 6 p < 1, i.e. 2rrN,S0/3 6 1, is obeyed without 
further assumptions, since the neglection of interference effects (cf discussion following (5)) 
implies that the mean distance between scatterers .., NS-'/* is ' larger than their size - S:/'. 
Since p approaches unity for grazing incidence, 0 + n/2 (or n), particles running almost 
parallel to the surface are not affected by surface irregularities. These carriers will give rise 
to an infinite diffusivity. 

3. Surface-dominated diffusion 

It is obvious that, without a bulk relaxation mechanism, a particle emerging k m  either 
surface is not scattered until it arrives at the other one. This implies that for the carrier 
distribution 

e(?, v) = constant along the straight path with direction G (12) 

including the initial and final point on the corresponding surface (see, for definitions, 
figure I) ,  or, in other words, the distribution emerging from the lower surface (U, > 0) 
yields that incident on the upper one and vice versa. The intensities incident and scattered 
at one and the same surface are related via the scattering relations (3). 

In the cumnt-canying state, the distribution e(r, v) is anisotropic with respect to the 
variable v to yield a non-vanishing current density (2). Futhermore, to give the driving 
density gradient, e(r, v) depends linearly on the longitudinal position. The (relative) shape 
of the lateral distribution between the planes z = 0 and z = d remains unchanged, however. 
This situation is described by the ansafz 

p(r, a) = e(z, v)(l t g q )  g = constant 113) 
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where g(z, v )  is the distribution for a reference cross section at rII = 0. Bearing in mind 
formula (12). the incoming densities at both surfaces are thus related to each other via 

R Lenk and A Kniibchen 

" 
e+@+) = e(d, v+) = [ I  - gAq(v+)l /  dQ- f-(w+, v-)e-(v-) 

e4v-I = e@, U-) = [ I  - gArn(v-)l dQ+ ft(v-,  v+)e+(vt) 
(14) s 

with an 'anisotropy' term 

gAr,l(w) = gdltanBlcosq. 

v* refer to U, 2 0. The density difference from the position where the carriers started 
can be found from equation (13) and is included via the angledependent pre-factor in 
brackets. These pre-factors are equal for v; = U-, i.e., if the variables w behave as do 
the velocities of a particle before and after a specular reflection. Then, provided that the 
scattering model (1 1) discussed in section 2 is employed, the system of integral equations 
(14) is solved by 

@+(vd = U  -gAqWa)@&*)16. (15) 

These distributions are characterized by an anisotropy corresponding to the current-canying 
state. For g = 0, this formula has to be compatible with the current-free result and thus e 
is the equilibrium disuibution at the surfaces. Employing formula (9), equations (14) are 
solved in this case by @ = constant. Furthermore, without a carrier density gradient, the 
density distribution is of course constant with respect to the longitudinal position rII = ( x ,  y). 
Finally. if we take advantage of the fact that the carriers cannot be scattered until they arrive 
at one of the surfaces (equation (12)) we find 'mediately 

e@,  v )  = constant I for g = 0 (16) 

i.e., the equilibrium density distribution is laterally homogeneous. As an implication of 
relation (9). this solution rests on the symmetry condition fulfilled by the differential 
scattering cross section S. We note that result (16) remains valid even for surfaces with 
different specularity parameters p +  and p - .  To avoid confusion, we emphasize again that (9) 
is an additional relation following from the symmetry of S and is not identical with the 
normalization condition (7). 

For g # 0, the contribution of the anisotropy term in (14) to the diffusely scattered part 
vanishes since JdQ cos q~ = 0. There remains a set of linear equations that yield the still 
unknown @p+(<) as functions of the specularity parameters p&). To linear order in the 
density gradient .., g. we obtain 

@do = [1 + P T ( t ) I / H  - P-(3)Pt(<)l (17) 

thus the density distributions (15) incident upon either surface are now determined. 

particular we find that 
Using e* the density distribution within the film can be constructed d imly .  In 

B ( Z ,  v t )  = [ 1 + [(d - z)/dlgArll(vt)}e+(v+) 

p ( z , v - )  = [l + (z/d)gArll(w-)]e-(v-) = 1 + [ z / d  - @-({-)]gAr~~(v-). 
= 1 + [(d - z/d - @+(t+)]gAr~l(v+) (18) 
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These solutions interpolate simply between the boundary distributions. Obviously, the 
anisotropy terms do not contribute to the angularly averaged density and thus the 
total density (1) of the reference cross section is given by e(z, rII = 0) = 4 r  
and g = (47r)-' ae(r)/ar (47r)-'grad~(~). The resulting current density (2) becomes 
independent of z, i.e., surface scattering alone leads to a laterally homogeneous current 
disnibution. The corresponding diffusion constant 

is defined by Fick's law, j = - D grad e. This result for surface-dominated diffusion will 
be discussed further in section 5. 

4. Diffusion against surface and bulk scatterers 

The general case is characterized by the simultaneous occurence of both surface and 
bulk scatterers. The latter are assumed to be distributed homogeneously and to scatter 
isotropically. Their mean volume density and their scattering cross section give rise to a 
finite mean free path, 1. 

Equation (12) is now invalid e(?, w) changes along any straight line in direction e, 
i.e., with the co-ordinate s = ZT, according to 

(20) 

The left-hand term accounts for scattering out of the ray direction, the right-hand one for 
scattering in that direction from all others with equal weight. The solution of (20) with the 
corresponding boundary values reads 

(a/& + l/l)e(T, v )  = (1/4al)e(~) .  

with 

T * ( f )  = T - (Z/C)S* T,' = P+(Z) T: = T-(d - 2 ) .  

The integrations in (21) are to be performed along a ray from the point T = (T ! ,  z) in 
the direction -E* to the lower or upper surface, respectively. As before in section 3, the 
boundary values of the outgoing intensities, edT..  vF), are determined by the corresponding 
surface scattering relation. In the equilibrium case, e ( r ,  w) -+ e(z. w), the solution is again 
found to be e(r,  v )  = constant 3 1. Generally, i.e., with a longitudinal density gradient, 
we can determine firstly the incident intensities at both boundaries. The total density Q(T) 

remains unaffected by the anisotropy of the velocity distribution. The result, for the special 
case of equivalent surfaces, p+(<)  = p- (<)  = p ( < ) ,  is 

<*l[ 1 - e(-d/h')]/d[ 1 - p(<s)e'-d/h')]}gA~,l(vi). (22) 
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in the appendix. For a sharp Fermi energy, D/Db can be replaced by u/ub with LT as the 
common conductivity. 

Let us at first consider expression (19). It iS obvious that, independent of the detailed 
nature of the specularity parameter, the surfacedominated diffusion constant shows a 
grazing incidence divergence for 5 -+ 0. This well known result can be undmtood 
by keeping in mind the fact that classical particles are allowed to fly parallel or nearly 
parallel to the surfaces of the film. This implies that a classical surface resistance does not 
arise unless a bulk relaxation mechanism exists. 

Provided that the specularity parameter has no angular dependence, p = constant, one 
obtains from (19) a weak logarithmic singularity, Such a singularity was already found by 
Fuchs in his 1938 paper [I]. Generally, the diffusion constant shows a stronger divergence 
for specular parameters which approach unity for grazing incidence. In particular, when p 
is given by (II), D diverges as 5-l. Therefore the grazing incidence singularity does not 
result from a crude description of surface scattering, but is even more pronounced for more 
realistic models. - '  

As opposed to a classical framework, quantum mechanical carrier propagation in a 
thin film is mainly characterized by the underlying discrete energy-level spectrum set up 
by the lateral boundaries L6.161. The discreteness of the eigenvalues becomes more and 
more negligible as the number of occupied subbands increases. There remains, however, 
an important difference from the classical case, namely, there is always a non-vanishing 
lateral component of the wavevector, k, z 0. Further, we can associate the ratio of this 
component to the total wavevector, k, with an classical angle of incidence according to 
B = cos-'(k,/k). The minimal value, k, = n/d, determines an upper limit, smaller than 
B = rr/2 in equation (19). for the angle of incidence and thus prevents a divergence of the 
surface-dominated conductivity. In particular, substituting the limit of integration into (19) 
yields (to leading order in kd >> 1) 

U, Y d2/N&. (28) 

We emphasize that the angular dependence of p ( < ) ,  equation (1 I), is essential for this 
result. This quadratic law already mentioned in the introduction is common to a number of 
quantum mechanical investigations [5-81. 

As a result derived from perturbational methods the resistivity is linearly dependent 
on the roughness parameter, us-' N N&. A comparison with the general expression 
(19) shows, however, that a classical treatment has the advantage of going beyond this 
approximation and describing also the non-linear dependence on NJ.. 

The introduction of an upper limit B c R/2 for the angle of incidence as discussed 
above is of relevance unless the free propagation of the carriers is restricted to finite free 
paths due to the very existence of bulk scattering. The conductivity in this case is given 
by formula (U). To obtain an idea of what follows from an angledependent specularity 
parameter, we have plotted in figure 2 the conductivity for different constant parameters p~ 
and corresponding values of the quantity q = $?N& (cf. equation (11)). choosen so as 
to obtain the same asymptotic behaviour for thick films, d / l  > 1, cf. (26) and (27). As 
the thickness becomes smaller than the MFP, Fuchs's conductivity decreases faster. This 
behaviour can be understood by keeping in mind the fact that an angular dependence of 
the form (11) renders ineffective the scattering of particles running almost parallel to the 
surface. Furthermore, as considered above, even their contribution gains importance for 
thin films. 

The limiting expression (26) has a very appealing structure: the roughness-induced 
resistivity contribution, ps, is proportional to the number of scattering centres per unit area 
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0.2 -( 

0.1 0.2 0.3 0.5 1 2 3  5 10 
d l l  

F i r e  Z The reduced conductivity. 01%. is shown as a function of the ratio of the thickness 
m the mean free path ob is Dmde's bulk conductivity and corresponds to lhe diffusion constant 
Db. The cuwes are calculated fmm equation (25) For b e  values of a constant speculariq 
parameter. p ~ ,  and the quantity q describing the fraction of diffusely scattered panicles (11). 

of the film surface and their corresponding scattering cross section, pr Y (Io;') N,S,/d. The 
quantity N,/d can be viewed as the (volume) impurity density resulting h m  a dishibution 
of the surface scatterers over the cross section. Consequently, Is 2 d/N& may be defined 
as the MFP associated with surface-roughness scattering and thus, as usual for bulk scatterers, 
ps LI I ; ] .  Generally, such a picture is known as the scattering hypothesis; it is discussed 
with respect to thin films by WiBmann 131. Hence, we have confirmed a specific case of 
this hypothesis and given a derivation based on a microscopic model. 

We have Seen that the grazing incidence divergence of the conductivity can be 
prevented either by bulk scattering or by the discreteness of the lateral eigenvalues in a 
quantum mechanical framework. Each of them determines an upper limit e,, for oblique 
incidence. In particular, from the exponential attenuation ec-d/t'J it follows, for 1 w d ,  
emx = cos-'(d/l). The corresponding value due to a minimal lateral velocity component 
is given by e,, Y cos-'(h~/2d) where hp denotes the Fermi wavelength of the carriers. 
The smaller of these two cut-off angles may be considered as the upper limit of integration in 
equation (25). For d2 7 1 h ~ .  no effect from the underlying discrete energy-level structure 
remains; the system shows purely classical behaviour. Otherwise, a finite conductivity 
originates mainly from quantum mechanical properties. The value of the quantity da/lhF 
determines therefore the region where a classical picture becomes invalid and quantum 
mechanics has to be used. 

We have already mentioned that the basic scattering law (10) may also be deduced 
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from a mathematical formulation of surface scattering given in [17], [IS] and [14]. In 
these papers, scatterers are considered as ‘bumps’ on the surface. It is worthwhile noticing 
that this situation differs from the case when the scatterers are distributed close to it. In 
connection with size effects, the latter model, for spherically symmetric scatterers, has been 
discussed by Chu and Sorbello [ 191. 

Guided by theoretical considerations or experimental data, a number of angledependent 
specularity parameters have been proposed [ 13,ZC-231. As does (1  1). these models have 
in common that they guarantee specular reflection for grazing incidence. Only Soffer’s 
model seems to be widely applied. In comparison to this, however, the method explained in 
section 2 offers a natural way of determining the specularity parameter in terms of properties 
of the surface. In particular, note the problems arising in [21] from the normalization 
procedure. 

6. Summary 

It is the aim of this paper to consider anew the transport in thin films with rough surfaces 
and to clarify a number of long-standing problems involved. In particular, we start with 
an analysis of the scattering at surface scatterers and introduce their differential scattering 
cross section, S(d, v). We have shown that the timereversal symmetry fulfilled by S(v’. w) 
is the condition for the homogeneity of the lateral carrier distribution. This physically 
appealing property was postulated by Fuchs [ l ]  and is required for his calculations to 
hold. The resulting specularity parameter is uniquely determined by current balance and 
shows in general an angular dependence determined by a specific choice of S. Moreover, 
provided that the latter quantity has a physically sensible form (cf the discussion following 
(IO)), the specularity parameter is always angle dependent. This result conflicts with the 
common model of a constant parameter. In view of our investigation, an angle-independent 
specularity parameter seems to be an oversimplified model and too far from reality. Finally 
we mention that it is only the more complicated scattering law (10) and the corresponding 
specularity parameter (1  I )  which allow us to make contact with the quantum mechanical 
result (28). i.e., they give an explanation of the quadratic dependence of the conductivity 
on the thickness. 
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Appendix 

In the ensemble of all non-interacting carriers, moving with different energies, the density 
of the diffusion problem reads 

where f is (now) the one-particle distribution function, p ( ~ )  the varying chemical potential, 
and n(E) denotes the density of states (per unit volume) of a homogeneous bulk system. 
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According to the Einstein equivalence, -8plar  is proportional to a driving force F, i.e., 
the overall density gradient can be replaced by a constant field of force. The electrical 
current density can now be written in terms of the diffusion current 

R Lenk and A Knabchen 

j,, = e  d E j ( E )  = e F  d E n ( E ) D ( E )  s s 
where e denotes the elementary charge and U the conductivity. For a degenerate electron 
gas with a sharp Fermi energy, EF, (A2) reduces to U = e2n(Ei)D(EF).  D/& can thus 
be replaced by u/q, as usual. 
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